Medyan Nasıl Bulunur?
Adından da anlaşılacağı gibi, medyan herhangi bir grup için orta değeri temsil eder. Verinin yarısının fazla, yarısının ise daha az olduğu noktadır. Medyan, tek bir veri noktasıyla çok sayıda veri noktasını temsil etmeye yardımcı olur. Medyan, hesaplanması en kolay istatistiksel ölçüdür. Medyanın hesaplanması için, verilerin artan sırada düzenlenmesi gerekir ve ardından en ortadaki veri noktası, verilerin medyanını temsil eder.
Ayrıca medyanın hesaplanması veri noktalarının sayısına bağlıdır. Tek sayıda veri için medyan en ortadaki veridir ve çift sayıda veri için medyan iki orta değerin ortalamasıdır. Bu web sayfasında medyan, çift tek sayıda veri noktası için medyan hesaplaması ve medyan formülü hakkında daha fazla bilgi edinelim.
Medyan Nasıl Bulunur?
Verilerin yalnızca belirli temsilcilerini göz önünde bulundurarak verilerin bazı önemli özelliklerini gözlemleyebilir misiniz? Bu durum merkezi eğilim ölçüleri veya ortalamalar kullanılarak mümkündür. bir Merkezi eğilim ölçüsü veri kümesindeki merkezi konumu tek bir değer olarak tanımlayarak bir veri kümesini tanımlar. Bunu, verilerin orta bir değer etrafında kümelenme eğilimi olarak düşünebiliriz. İstatistikte, merkezi eğilimlerin en yaygın üç ölçüsü Ortalama, Medyan ve Mod’dur.
Medyan Tanımı: Verilerin artan düzende düzenlenmesinden sonra elde edilen en ortadaki gözlemin değerine denir. Medyan Verilerden. Çoğu durumda, temsil için tam verileri dikkate almak zordur ve burada medyan yararlıdır. İstatistiksel özet metrikler arasında medyan, hesaplanması kolay bir metriktir. Medyan, bir dizinin ortasına yerleştirilen veriler medyan olarak alındığından, Yer Ortalaması olarak da adlandırılır. Verilerin medyanını nasıl bulacağınızı biliyor musunuz? Medyanın nasıl bulunacağını bulmak için bir örnek düşünelim.
- 1. Adım: Verileri göz önünde bulundurun: 4, 4, 6, 3 ve 2. Bu verileri artan sırada düzenleyelim: 2, 3, 4, 4, 6.
- 2. Adım: Değerlerin sayısını sayın. 5 değer vardır.
- 3. Adım: Ortadaki değeri arayın. Ortadaki değer medyandır. Böylece, medyan=4
İki Sayının Ortancası Nasıl Bulunur?
Sıralı bir seride medyan, uç aralıkların ortasında kalan sayıdır. Genellikle ortalama ile aynı değildir. Medyanı nasıl bulacağımızı anlayalım. İki değerden oluşan bir set için medyan, ortalama veya aritmetik ortalama ile aynı olacaktır. Örneğin, 2 ve 10 sayılarının her ikisinin de ortalaması ve medyanı 6’dır. Medyanın, değerlerin orta noktası değil, veri kümesinin orta noktasındaki değer olduğuna dikkat edin. Ortalama, aritmetik ortalamadır: (10+2)/2=6. Ya iki sayı daha eklersek, diyelim ki 3 ve 4? Medyan 3.5 olacak. Fakat ortalama (2+3+4+10)/4=4.75 olacak.
Medyan için formül
Medyanı bulma formülü, veri türüne ve veri miktarına bağlıdır. Aşağıdaki formül seti, verilen verilerin medyanını bulmada yardımcı olacaktır.
Durum 1: Gruplandırılmamış Veriler
Aşağıdaki adımlar, gruplandırılmamış verilerin medyanını bulmak için yararlıdır.
- 1. Adım: Verileri artan veya azalan sırada düzenleyin.
- 2. Adım: İkinci olarak, toplam gözlem sayısını ‘n’ olarak sayın.
- 3. Adım: ‘n’ gözlem sayısının çift mi yoksa tek mi olduğunu kontrol edin.
Eğer n tuhaf, ardından formülü kullanın:
Ve eğer n çifttir, ardından formülü kullanın:
Durum 2: Gruplandırılmış Veriler
Veriler sürekli ve bir frekans dağılımı şeklinde olduğunda, medyan aşağıdaki adımlar dizisi ile hesaplanır.
- 1. Adım: Toplam gözlem sayısını (n) bulun.
- 2. Adım: Sınıf boyutunu(h) tanımlayın ve verileri farklı sınıflara bölün.
- 3. Adım: Her sınıfın kümülatif frekansını hesaplayın.
- 4. Adım: Medyanın düştüğü sınıfı belirleyin. (Medyan Sınıfı, n/2’nin bulunduğu sınıftır.)
- 5. Adım: Medyan sınıfının (l) alt sınırını ve medyan sınıfının (c) kümülatif frekansını bulun.
Şimdi medyan değeri bulmak için aşağıdaki formülü kullanın.
Önemli notlar
Yukarıdaki içerik medyanı bulmak için aşağıdaki noktalar şeklinde özetlenmiştir.
- Medyan, verilerin merkezi değeridir (Konumsal Ortalama).
- Orta değeri bulmak için veriler artan/azalan sırada düzenlenmelidir.
- Her değer dikkate alınmaz.
- Uç noktalardan etkilenmez.
Düşünme Zamanı
Şimdi medyanın öğrenilen kavramlarını uygulama zamanı. İşte size bir soru!
Soru: İlk beş tam sayının ortancasını belirleyin. Bir şirkette, bir hizmet yükseltme sürecinde çalışan 10 çalışanın her biri için satılan hizmet yükseltme sayısı şu şekildedir: 34, 26, 30, 21, 25, 12, 18, 20, 19, 15. 10 çalışan tarafından satılan ortalama hizmet yükseltmesi sayısı?
Medyan Nasıl Bulunur Hakkında SSS
Ortalama, Medyan, Mod ve Açıklık Arasındaki Fark Nedir?
Ortalama, belirli bir veri kümesinin aritmetik ortalamasıdır. Medyan, verilen bir dizi sayının ortasındaki puandır. Mod, verilen sayılar kümesinde en sık görülen değerdir. Açıklık, en yüksek ve en düşük değerler arasındaki farktır.
Ortalama, Mod ve Açıklık Nasıl Bulunur?
Mod, verilen veri kümesindeki en çok tekrar eden sayıyı ifade eder. Ortalama, tüm sayıların ortalamasıdır: Tüm değerleri toplayın ve toplamı, değerlerin sayısına bölün. Açıklık, en yüksek ve en düşük değerler arasındaki farktır.
Medyan Nasıl Hesaplanır?
Bir veri kümesinin medyanı, iki basit adım izlenerek hesaplanır. İlk başta verilen verileri artan sırada düzenleyin. Ardından, en ortadaki verileri seçmemiz gerekiyor.
- Çift sayıda veri noktası için iki orta değer vardır ve bu iki orta değerin ortalamasını almamız gerekir.
- Tek sayıda veri noktası için yalnızca bir orta veri noktası vardır ve bunu verilerin medyanı olarak alabiliriz.
Ortalama ve Medyan nedir?
Verilerin ortalaması, verilerin ortalamasıdır ve tüm veri değerlerinin toplamının veri noktalarının sayısına bölünmesine eşittir. Verilerin medyanı, verileri artan sırada düzenledikten sonra verilerin orta değeridir.
Medyan Ortalama ile Aynı mı?
Verilerin medyanı ortalamadan farklıdır. Medyan, verilen veri noktalarının orta değeridir ve ortalama, veri değerlerinin toplamının veri noktalarının sayısına bölünmesiyle elde edilen değerdir. Ancak 2, 4, 6, 8, 10 gibi eşit aralıklı sayılar için medyan ve ortalama aynıdır, yani 6’dır.
Medyan Uygulaması Nelerdir?
Medyan, çok sayıda veri noktası için tek bir değeri temsil etmeye yardımcı olan önemli bir istatistiksel ölçüdür. Örnek olarak, bir sınıftaki öğrencilerin boy veya yaş verileri, verilerin tek bir medyan değeri ile temsil edilir.
Veriler Artan Sırada Nasıl Düzenlenir?
Verileri artan düzende düzenlemek için, verileri en küçük değerlerden başlayarak yazmamız ve ayrıca değerlerinin artan sırasına göre veri noktalarını eklememiz gerekir.
Medyan Neden Konumsal Ortalama Olarak Adlandırılır?
Veriler artan veya azalan bir düzende düzenlendiğinde medyan ortada düşer. Bu nedenle medyan, basamak ortalama olarak adlandırılır. Medyan, tek sayıda veri noktası olması durumunda tam orta değerdir, oysa çift sayıda veri noktası için medyan, iki orta değerin ortalamasıdır.